

Intel[®] Compute Module MFS5000SI

Technical Product Specification

Intel order number: E15154-003

Revision 1.0

September 2007

Enterprise Platforms and Services Division

Revision History

Date	Revision Number	Modifications
July 2007	0.95	Initial release.
August 2007	0.96	Updated
September 2007	1.0	Updated

Disclaimers

Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life saving, or life sustaining applications. Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The Intel® Compute Module MFS5000SI may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Intel Corporation server baseboards support peripheral components and contain a number of high-density VLSI and power delivery components that need adequate airflow to cool. Intel's own chassis are designed and tested to meet the intended thermal requirements of these components when the fully integrated system is used together. It is the responsibility of the system integrator that chooses not to use Intel developed server building blocks to consult vendor datasheets and operating parameters to determine the amount of air flow required for their specific application and environmental conditions. Intel Corporation can not be held responsible if components fail or the compute module does not operate correctly when used outside any of their published operating or non-operating limits.

Intel, Pentium, Itanium, and Xeon are trademarks or registered trademarks of Intel Corporation.

*Other brands and names may be claimed as the property of others.

Copyright © Intel Corporation 2007.

Table of Contents

1.	Introdu	uction	1
1	.1	Chapter Outline	1
1	.2	Intel® Compute Module Use Disclaimer	1
2.	Produc	ct Overview	2
2	2.1	Intel® Compute Module MFS5000SI Feature Set	2
2	2.2	Compute Module Layout	3
	2.2.1	Connector and Component Locations	3
	2.2.2	External I/O Connector Locations	4
	2.2.3	Compute Module Mechanical Drawings	5
3.	Function	onal Architecture	6
3	3.1	Intel® 5000P Memory Controller Hub (MCH)	7
	3.1.1	System Bus Interface	7
	3.1.2	Processor Support	7
	3.1.3	Memory Sub-system	8
3	3.2	ESB-2 IO Controller	15
	3.2.1	PCI Sub-system	15
	3.2.2	Serial ATA Support	16
	3.2.3	Parallel ATA (PATA) Support	16
	3.2.4	USB 2.0 Support	16
3	3.3	Video Support	16
3	3.4	Network Interface Controller (NIC)	17
	3.4.1	Intel [®] I/O Acceleration Technology	17
	3.4.2	MAC Address Definition	18
3	3.5	Super I/O	18
4.	Platfor	m Management	20
5.	Connec	ctor / Header Locations and Pin-outs	22
5	5.1	Board Connector Information	22
5	5.2	Power Connectors	22
5	5.3	I/O Connector Pin-out Definition	23
	5.3.1	VGA Connector	23
	5.3.2	I/O Mezzanine Card Connector	23
	5.3.3	Midplane Signal Connector	25

Table of Contents

	5.3.4	Serial Port Connector	25
	5.3.5	USB 2.0 Connectors	26
6.	Jumper	Block Settings	27
6	.1	Recovery Jumper Blocks	27
	6.1.1	CMOS Clear and Password Reset Usage Procedure	28
	6.1.2	BMC Force Update Procedure	28
	6.1.3	System Status LED – BMC Initialization	29
7.	Product	Regulatory Requirements	30
7	.1	Intended Application	30
7	.2	Product Safety Requirements	30
7	.3	Electro Magnetic Compatibility (EMC) / Harmonic Requirements	30
7	.4	Product Ecology Requirements	30
-	.5 Certificatio	Component Regulatory Requirements Needed to Support System Level	31
7	.6	Product Regulatory Compliance and Safety Markings	32
Аp	pendix A	: Integration and Usage Tips	33
Аp	pendix B	: BMC Sensor Tables	34
Аp	pendix C	: POST Error Messages and Handling	42
Аp	pendix D	: Supported Intel [®] Modular Server System	45
Glo	ssary		46
Ref	ference D	Oocuments	49

List of Figures

Figure 1. Component and Connector Location Diagram	3
Figure 2. Intel [®] Compute Module MFS5000SI Front Panel Layout	4
Figure 3. Intel [®] Compute Module MFS5000SI – Hole and Component Positions	5
Figure 4. Compute Module Functional Block Diagram	6
Figure 5. CEK Processor Mounting	8
Figure 6. Memory Layout	9
Figure 7. Recommended Minimum Two-DIMM Memory Configuration	12
Figure 8. Recommended Four-DIMM Configuration	13
Figure 9. Single Branch Mode Sparing DIMM Configuration	14
Figure 10. Recovery Jumper Blocks	27
Figure 11. Intel® Modular Server System MFSYS25	45

List of Tables

Table 1. Processor Support Matrix	7
Table 2. I ² C Addresses for Memory Module SMB	9
Table 3. Maximum 8 DIMM System Memory Configuration – x8 Single Rank	10
Table 4. Maximum 8 DIMM System Memory Configuration – x4 Dual Rank	10
Table 5. PCI Bus Segment Characteristics	15
Table 6. Video Modes	17
Table 7. Serial Header Pin-out	18
Table 8. Compute module I ² C Bus Segments and Addresses	20
Table 9. Board Connector Matrix	22
Table 10. Power Connector Pin-out (J1A1)	22
Table 11. VGA Connector Pin-out (J6A1)	23
Table 12. 120-pin I/O Mezzanine Card Connector Pin-out	24
Table 13. 96-pin Midplane Signal Connector Pin-out	25
Table 14. Internal 9-pin Serial 'A' Header Pin-out (J1B1)	26
Table 15. External USB Connector Pin-out	26
Table 16. Recovery Jumpers	28
Table 17. BMC Sensors	35
Table 18. Analog Sensor Thresholds	40
Table 19. POST Error Messages and Handling	42
Table 20. POST Error Beep Codes	44

Introduction 1.

This Technical Product Specification (TPS) provides board specific information detailing the features. functionality, and high-level architecture of the Intel® Compute Module MFS5000SI. The Intel® 5000 Series Chipsets Server Board Family Datasheet should also be referenced for more in-depth detail of various board sub-systems, including chipset, BIOS, System Management, and System Management software.

1.1 **Chapter Outline**

This document is divided into the following chapters

- Chapter 1 Introduction
- Chapter 2 Product Overview
- Chapter 3 Functional Architecture
- Chapter 4 Platform Management
- Chapter 5 Connector / Header Locations and Pin-outs
- Chapter 6 Block Setting Jumpers
- Chapter 7 Product Regulatory Requirements
- Appendix A Integration and Usage Tips
- Appendix B BMC Sensor Tables
- Appendix C Post Error Messages and Handling
- Appendix D Supported Intel® Modular Server System

1.2 Intel® Compute Module Use Disclaimer

Intel® Modular Server components require adequate airflow to cool. Intel ensures through its own chassis development and testing that when these components are used together, the fully integrated system will meet the intended thermal requirements. It is the responsibility of the system integrator who chooses not to use Intel developed server building blocks to consult vendor datasheets and operating parameters to determine the amount of air flow required for their specific application and environmental conditions. Intel Corporation cannot be held responsible if components fail or the system does not operate correctly when used outside any of their published operating or non-operating limits.

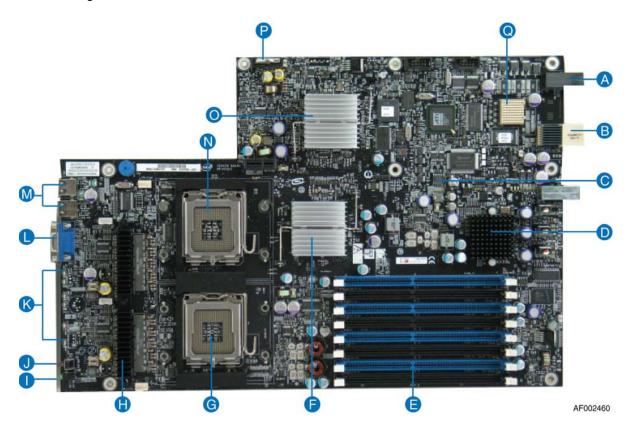
1 **Revision 1.0** Intel order number: E15154-003

2. Product Overview

The Intel® Compute Module MFS5000SI is a monolithic printed circuit board with features that were designed to support the high-density compute module market.

2.1 Intel[®] Compute Module MFS5000SI Feature Set

Feature	Description			
Processors	771-pin LGA sockets supporting 1 or 2 Dual-Core or Quad-Core Intel® Xeon® processors 5000 sequence, with system bus speeds of 1066 MHz or 1333 MHz			
Memory	8 Keyed DIMM slots supporting fully buffered DIMM technology (FBDIMM) memory. 240-pin DDR2-677 FBDIMMs must be used.			
Chipset	Intel® 5000 Chipset Family which includes the following components:			
	■ Intel® 5000P Memory Controller Hub			
	■ Intel [®] 6321ESB I/O Controller Hub ¹			
On-board	External connections:			
Connectors/Headers	■ Two USB 2.0 ports			
	Video connector			
	Internal connectors/headers:			
	One DH10 Serial A debug header			
	One Intel® I/O Mezzanine Connector supporting:			
	 Dual GB NIC Intel[®] I/O Expansion Module (Optional) 			
On-board Video	ATI* ES1000 video controller with 16MB DDR SDRAM			
On-board Hard Drive Controller	LSI* 1064e SAS controller			
LAN	Two integrated 10/100/1000 Ethernet ports and two optional 10/100/1000 Ethernet ports, provided by the Dual GB NIC mezzanine module			


Revision 1.0

¹ For the remainder of this document, the Intel[®] 6321ESB I/O Controller Hub will be referred to as ESB-2.

2.2 Compute Module Layout

2.2.1 Connector and Component Locations

The following figure shows the board layout of the Intel® Compute Module MFS5000SI. Each connector and major component is identified by a number or letter. A description of each identified item is provided below the figure.

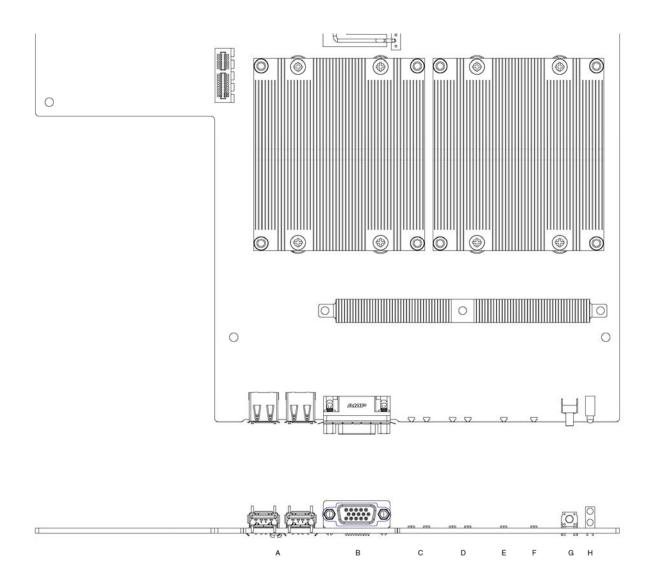

	Description		Description
Α	Midplane Power Connector	В	Midplane Signal Connector
С	POST Code Diagnostic LEDs	D	SAS Controller
Е	FBDIMM Slots	F	Intel® 5000P Memory Controller Hub (MCH)
G	CPU #1 Socket	Н	Voltage Regulator Heatsink
I	Power/Fault LEDs	J	Power Button
K	Activity and ID LEDs	L	Video Connector
М	USB1 and USB2 Connectors	N	CPU #2 Socket
0	Intel® 6321ESB I/O Controller Hub	Р	CMOS Battery
Q	I/O Mezzanine Card Connector		

Figure 1. Component and Connector Location Diagram

Intel order number: E15154-003

2.2.2 External I/O Connector Locations

The following drawing shows the layout of the external I/O components for the Intel® Compute Module MFS5000SI.

Α	A USB ports 1 and 2		Hard Drive Activity LED
B Video		F	ID LED
С	I/O ports 1 and 2	G	Power button
D	NIC ports 1 and 2	Н	Power and Fault LEDs

Figure 2. Intel[®] Compute Module MFS5000SI Front Panel Layout

2.2.3 Compute Module Mechanical Drawings

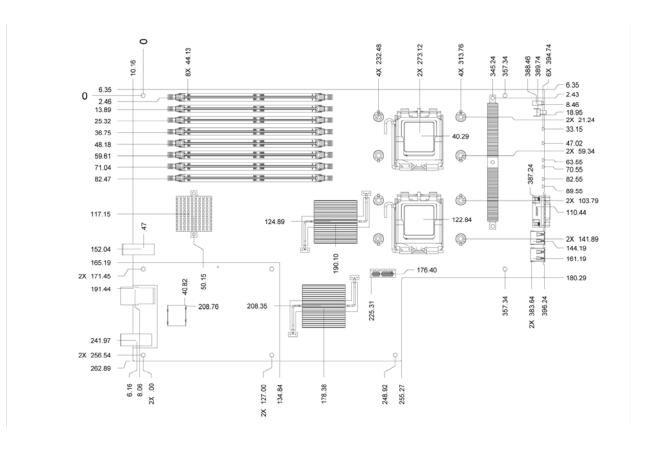


Figure 3. Intel[®] Compute Module MFS5000SI – Hole and Component Positions

3. Functional Architecture

The architecture and design of the Intel® Compute Module MFS5000SI is based on the Intel® 5000 Chipset Family. The chipset is designed for systems based on the Dual-Core and Quad-Core Intel® Xeon® processor 5000 sequence with system bus speeds of 667 MHz, 1066 MHz, and 1333 MHz. The chipset is made up of two main components: the Memory Controller Hub (MCH) for the host bridge and the ESB-2 I/O controller hub for the I/O subsystem. This chapter provides a high-level description of the functionality associated with each chipset component and the architectural blocks that make up the server board. For more in-depth detail of the functionality for each of the chipset components and each of the functional architecture blocks, see the Intel® 5000 Series Chipsets Server Board Family Datasheet.

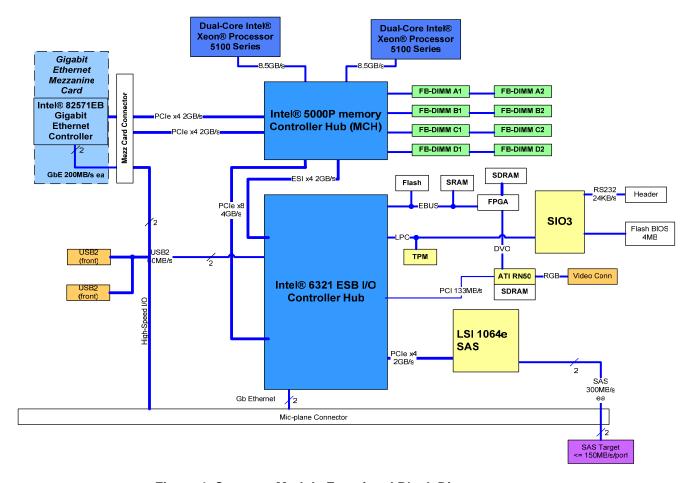


Figure 4. Compute Module Functional Block Diagram

Note: The previous diagram uses the Intel[®] 5000P MCH as a general reference designator for MCH components supported on this server board.

3.1 Intel® 5000P Memory Controller Hub (MCH)

This section will describe the general functionality of the memory controller hub as it is implemented on this server board.

The MCH is a single 1432-pin FCBGA package, which includes the following core platform functions:

- System Bus Interface for the processor sub-system
- Memory Controller
- PCI Express* Ports, including the Enterprise South Bridge Interface (ESI)
- FBD Thermal Management
- SMBUS Interface

Additional information about MCH functionality can be obtained from the *Intel*[®] 5000 Series Chipsets Server Board Family Datasheet and the *Intel*[®] 5000P Memory Controller Hub External Design Specification.

3.1.1 System Bus Interface

The MCH is configured for symmetric multi-processing across two independent front side bus interfaces that connect to the Dual-Core and Quad-Core Intel[®] Xeon[®] processors 5000 sequence. Each front side bus on the MCH uses a 64-bit wide 1066 or 1333 MHz data bus. The 1333-MHz data bus is capable of transferring data at up to 10.66 GB/s. The MCH supports a 36-bit wide address bus, capable of addressing up to 64 GB of memory. The MCH is the priority agent for both front side bus interfaces, and is optimized for one processor on each bus.

3.1.2 Processor Support

The Intel® Compute Module MFS5000SI supports one or two Dual-Core Intel® Xeon® processors 5100 sequence or Quad-Core Intel® Xeon® processors 5300 sequence, with system bus speeds of 1066 MHz and 1333 MHz, and core frequencies starting at 2.67 GHz. Previous generations of the Intel® Xeon® processor are not supported in the Intel® Compute Module MFS5000SI. See the following table for a list of supported processors.

Processor Family	System Bus Speed	Core Frequency	Cache	Watts	Support
Dual-Core Intel® Xeon® processor 5160	1333 MHz	3.0 GHz	4 MB	80	Yes
Dual-Core Intel® Xeon® processor 5150	1333 MHz	2.66 GHz	4 MB	65	Yes
Dual-Core Intel® Xeon® processor 5140	1333 MHz	2.33 GHz	4 MB	65	Yes
Quad-Core Intel [®] Xeon [®] processor E5345	1333 MHz	2.33 GHz	8 MB	80	Yes
Quad-Core Intel [®] Xeon [®] processor E5335	1333 MHz	2.0 GHz	8 MB	80	Yes
Quad-Core Intel [®] Xeon [®] processor E5320	1066 MHz	1.86 GHz	8 MB	80	Yes

Table 1. Processor Support Matrix

3.1.2.1 Processor Population Rules

When two processors are installed, both must be of identical revision, core voltage, and bus/core speed. Mixed processor steppings is supported in N and N-1 configurations only. The stepping of one processor

Revision 1.0 7

cannot be greater than one stepping back of the other. When only one processor is installed, it must be in the socket labeled CPU1. The other socket must be empty.

The board is designed to provide up to 115A of current per processor. Processors with higher current requirements are not supported.

No terminator is required in the second processor socket when using a single processor configuration.

3.1.2.2 Common Enabling Kit (CEK) Design Support

The compute module complies with Intel's Common Enabling Kit (CEK) processor mounting and heatsink retention solution. The compute module ships with a CEK spring snapped onto the underside of the server board, beneath each processor socket. The heatsink attaches to the CEK, over the top of the processor and the thermal interface material (TIM). See the following figure for the stacking order of the chassis, CEK spring, server board, TIM, and heatsink.

The CEK spring is removable, allowing for the use of non-Intel heatsink retention solutions.

Note: The processor heatsink and CEK spring shown in the following diagram are for reference purposes only. The actual processor heatsink and CEK solutions compatible with this generation server board may be of a different design.

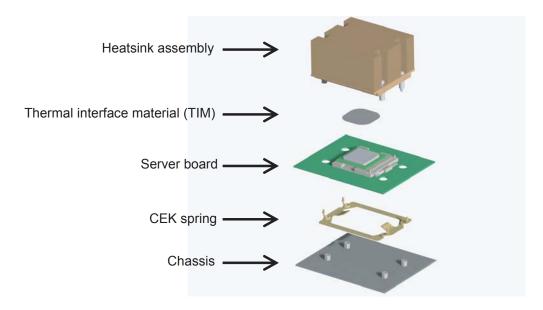


Figure 5. CEK Processor Mounting

3.1.3 Memory Sub-system

The MCH masters four fully buffered DIMM (FBD) memory channels. FBD memory utilizes a narrow high speed frame oriented interface referred to as a channel. The four FBD channels are organized into two branches of two channels per branch. Each branch is supported by a separate memory controller. The two channels on each branch operate in lock step to increase FBD bandwidth. On the server board, the four channels are routed to eight DIMM slots and are capable of supporting registered DDR2-533 and DDR2-667 FBDIMM memory (stacked or unstacked). Peak theoretical memory data bandwidth is 6.4GB/s with DDR2-533 and 8.0GB/s with DDR2-667.

On the Intel[®] Compute Module MFS5000SI, a pair of channels becomes a branch where Branch 0 consists of channels A and B, and Branch 1 consists of channels C and D. FBD memory channels are organized into two branches for support of RAID 1 (mirroring).

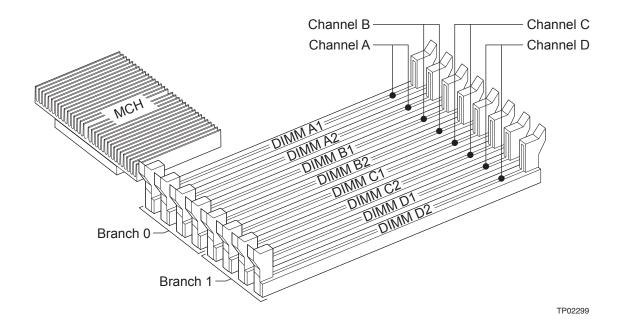


Figure 6. Memory Layout

To boot the system, the system BIOS on the server board uses a dedicated I²C bus to retrieve DIMM information needed to program the MCH memory registers. The following table provides the I²C addresses for each DIMM slot.

Table 2. I²C Addresses for Memory Module SMB

Device	Address
DIMM A1	0xA0
DIMM A2	0xA2
DIMM B1	0xA0
DIMM B2	0xA2
DIMM C1	0xA0
DIMM C2	0xA2
DIMM D1	0xA0
DIMM D2	0xA2

16 GB

Memory RASUM Features² 3.1.3.1

2048 Mb

The MCH supports several memory RASUM (Reliability, Availability, Serviceability, Usability, and Manageability) features. These features include the Intel® x4 Single Device Data Correction (Intel® x4 SDDC) for memory error detection and correction, Memory Scrubbing, Retry on Correctable Errors, Memory Built In Self Test, DIMM Sparing, and Memory Mirroring. See the Intel® 5000 Series Chipsets Server Board Family Datasheet for more information describing these features.

3.1.3.2 Supported Memory

The server board design supports up to eight DDR2-533 or DDR2-667 Fully Buffered DIMMs (FBD memory). The following tables show the maximum memory configurations supported using the specified memory technology.

DRAM Technology x8 Single Rank	Maximum Capacity Mirrored Mode	Maximum Capacity Non-Mirrored Mode
256 Mb	1 GB	2 GB
512 Mb	2 GB	4 GB
1024 Mb	4 GB	8 GB

Table 3. Maximum 8 DIMM System Memory Configuration – x8 Single Rank

Table 4. Maximum 8 DIMM System Memory Configuration - x4 Dual Rank

8 GB

DRAM Technology x4 Dual Rank	Maximum Capacity Mirrored Mode	Maximum Capacity Non-Mirrored Mode	
256 Mb	4 GB	8 GB	
512 Mb	8 GB	16 GB	
1024 Mb	16 GB	32 GB	
2048 Mb	16 GB	32 GB	

Note: DDR2 DIMMs that are not fully buffered are NOT supported on this server board. No DDR2-533 memory is planned to be validated on this product. See the Intel® Compute Module MFS5000SI Tested *Memory List* for a complete list of supported memory for this server board.

3.1.3.3 **DIMM Population Rules and Supported DIMM Configurations**

DIMM population rules depend on the operating mode of the memory controller, which is determined by the number of DIMMs installed. DIMMs must be populated in pairs. DIMM pairs are populated in the following DIMM slot order: A1 and B1, C1 and D1, A2 and B2, C2 and D2. DIMMs within a given pair must be identical with respect to size, speed, and organization. However, DIMM capacities can be different between different DIMM pairs.

For example, a valid mixed DIMM configuration may have 512-MB DIMMs installed in DIMM Slots A1 and B1, and 1-GB DIMMs installed in DIMM slots C1 and D1.

Intel supported DIMM configurations for this server board are shown in the following table.

10 **Revision 1.0**

² DIMM Sparing and Memory Mirroring features will be made available post production launch with a BIOS update.

Supported and Validated configuration : Slot is populated

Supported but not validated configuration : Slot is populated

Slot is not populated

Mirroring: Y = Yes. Indicates that configuration supports Memory Mirroring. Sparing: Y(x) = Yes. Indicates that configuration supports Memory Sparing.

Where x = 0 : Sparing supported on Branch0 only 1 : Sparing supported on Branch1 only 0,1 : Sparing supported on both branches

	Brar	nch 0		Branch 1			Missosino	Smorting	
Chan	nnel A	Chan	nel B	Channel C Channel D		nel D	Mirroring Possible	Sparing Possible	
DIMM_A1	DIMM_A2	DIMM_B1	DIMM B2	DIMM C1	DIMM C2	DIMM D1	DIMM D2		
									Y (0)
								Υ	
									Y (0)
								Υ	Y (0, 1)

Notes:

- Single channel mode is only tested and supported with a 512-MB x8 FBDIMM installed in DIMM slot A1.
- The supported memory configurations must meet population rules defined above.
- For **best** performance, the number of DIMMs installed should be balanced across both memory branches. For Example: a four-DIMM configuration will perform better than a two-DIMM configuration and should be installed in DIMM slots A1, B1, C1, and D1. An eight-DIMM configuration will perform better then a six-DIMM configuration.
- Although mixed DIMM capacities between channels is supported by the design, Intel does not validate DIMMs in mixed DIMM configurations.

3.1.3.3.1 Minimum Non-Mirrored Mode Configuration

The server board is capable of supporting a minimum of one DIMM installed. However, for system performance reasons, Intel's recommendation is that at least 2 DIMMs be installed.

The following diagram shows the recommended minimum DIMM memory configuration. Populated DIMM slots are shown in **Grey**.

Revision 1.0 11

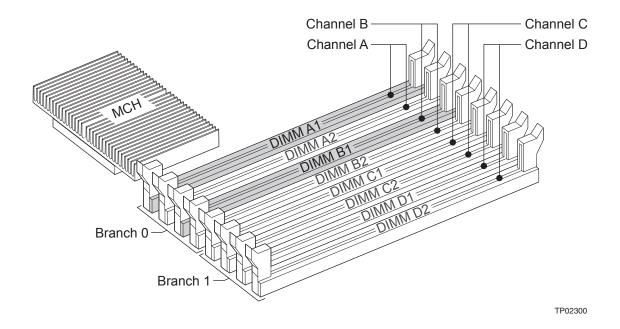


Figure 7. Recommended Minimum Two-DIMM Memory Configuration

Note: The server board supports single DIMM mode operation. Intel will only validate and support this configuration with a single 512MB x8 FBDIMM installed in DIMM slot A1.

3.1.3.4 Non-mirrored Mode Memory Upgrades

The minimum memory upgrade increment is two DIMMs per branch. The DIMMs must cover the same slot position on both channels. DIMM pairs must be identical with respect to size, speed, and organization. DIMMs that cover adjacent slot positions do not need to be identical.

When adding two DIMMs to the configuration shown in Figure 7, the DIMMs should be populated in DIMM slots C1 and D1 as shown in the following diagram. Populated DIMM slots are shown in **Grey**.

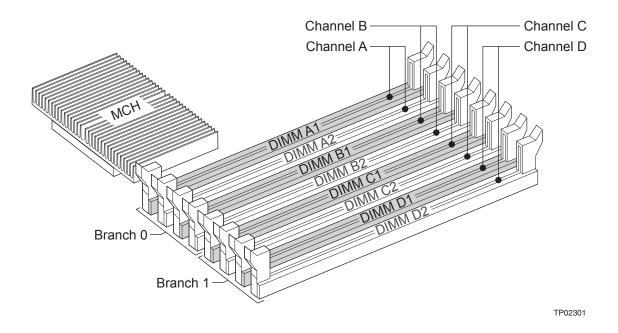


Figure 8. Recommended Four-DIMM Configuration

Functionally, DIMM slots A2 and B2 could also have been populated instead of DIMM slots C1 and D1. However, your system will not achieve equivalent performance. Figure 8 shows the supported DIMM configuration that is recommended because it allows both memory branches from the MCH to operate independently and simultaneously. FBD bandwidth is doubled when both branches operate in parallel.

3.1.3.4.1 Mirrored Mode Memory Configuration

When operating in mirrored mode, both branches operate in lock step. In mirrored mode, branch 1 contains a replicate copy of the data in branch 0. The minimum DIMM configuration to support memory mirroring is four DIMMs, populated as shown in Figure 8. All four DIMMs must be identical with respect to size, speed, and organization.

To upgrade a four-DIMM mirrored memory configuration, four additional DIMMs must be added to the system. All four DIMMs in the second set must be identical to the first with the exception of speed. The MCH will adjust to the lowest speed DIMM.

3.1.3.4.2 DIMM Sparing Mode Memory Configuration

The MCH provides DIMM sparing capabilities. Sparing is a RAS feature that involves configuring a DIMM to be placed in reserve so it can be use to replace a DIMM that fails. DIMM sparing occurs within a given bank of memory and is not supported across branches.

There are two supported Memory Sparing configurations.

3.1.3.4.2.1 Single Branch Mode Sparing

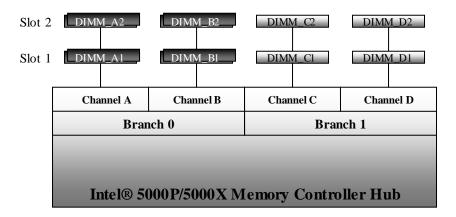


Figure 9. Single Branch Mode Sparing DIMM Configuration

- DIMM A1 and DIMM B1 must be identical in organization, size and speed.
- DIMM_A2 and DIMM_B2 must be identical in organization, size and speed.
- DIMM_A1 and DIMM_A2 need not be identical in organization, size and speed.
- DIMM_B1 and DIMM_B2 need not be identical in organization, size and speed.
- Sparing should be enabled in BIOS setup.
- BIOS will configure Rank Sparing Mode.
- The larger of the pairs {DIMM_A1, DIMM_B1} and {DIMM_A2, DIMM_B2} will be selected as the spare pair unit.

3.1.3.4.2.2 Dual Branch Mode Sparing

Dual branch mode sparing requires that all eight DIMM slots be populated and must comply with the following population rules.

- DIMM_A1 and DIMM_B1 must be identical in organization, size and speed.
- DIMM A2 and DIMM B2 must be identical in organization, size and speed.
- DIMM C1 and DIMM D1 must be identical in organization, size and speed.
- DIMM C2 and DIMM D2 must be identical in organization, size and speed.
- DIMM A1 and DIMM A2 need not be identical in organization, size and speed.
- DIMM_B1 and DIMM_B2 need not be identical in organization, size and speed.
- DIMM_C1 and DIMM_C2 need not be identical in organization, size and speed.
- DIMM_D1 and DIMM_D2 need not be identical in organization, size and speed.
- Sparing should be enabled in BIOS setup.
- BIOS will configure Rank Sparing Mode.
- The larger of the pairs {DIMM_A1, DIMM_B1} and {DIMM_A2, DIMM_B2} and {DIMM_C1, DIMM_D1} and {DIMM_C2, DIMM_D2} will be selected as the spare pair units.

3.2 ESB-2 IO Controller

The ESB-2 is a multi-function device that provides four distinct functions: an IO Controller, a PCI-X* Bridge, a Gb Ethernet Controller, and a Baseboard Management Controller (BMC). Each function within the ESB-2 has its own set of configuration registers. Once configured, each appears to the system as a distinct hardware controller.

A primary role of the ESB-2 is to provide the gateway to all PC-compatible I/O devices and features. The server board uses the following ESB-2 features:

- Dual GbE MAC
- Baseboard Management Controller (BMC)
- Universal Serial Bus 2.0 (USB) interface
- LPC bus interface
- PC-compatible timer/counter and DMA controllers
- APIC and 8259 interrupt controller
- Power management
- System RTC
- General purpose I/O

This section describes the function of most of the listed features as they pertain to this server board. For more detail information, see the Intel® 5000 Series Chipsets Server Board Family Datasheet or the Intel® Enterprise South Bridge-2 External Design Specification.

3.2.1 PCI Sub-system

The primary I/O buses for the server board are PCI and PCI Express*. The PCI buses comply with the *PCI Local Bus Specification*, Revision 2.3. The following table lists the characteristics of the PCI bus segments. Details about each bus segment follow the table.

Table 5. PCI Bus Segment Characteristics

PCI Bus Segment	Voltage	Width	Speed	Type	On-board Device Support		
PCI32	3.3V	32 bit	33MHz	PCI	Used internally for video controller		
ESB-2	3.3 V	32 bit	JOIVII IZ	FCI	Osed internally for video controller		
PE1	3.3V	x4	10Gb/S	PCIe*	This interface is not used in the Intel®		
ESB-2 PCIe* Port2	3.34	X4	7/0001	PCIe"	Compute Module MFS5000SI design		
PE2	3.3V	x4	10Gb/S	PCIe	Lland internally for LSI* 10645 SAS controller		
ESB-2 PCIe Port3	3.34	X4	1000/5	PCIE	Used internally for LSI* 1064e SAS controller		
PE4, PE5							
BNB PCIe Ports	3.3V	x8	20Gb/S	PCle	I/O Mezzanine slot		
4,5							
PE6, PE7					This interface is not used in the Intel®		
BNB PCIe Ports	3.3V	x8 20Gb/S		/S PCIe	Compute Module MFS5000SI design		
6,7					250000, 400,9.1		

Revision 1.0 Intel order number: E15154-003

3.2.1.1 PCI32: 32-bit, 33-MHz PCI Bus Segment

All 32-bit, 33-MHz PCI I/O is directed through the ESB-2 ICH6. The 32-bit, 33-MHz PCI segment created by the ESB-2-ICH6 is known as the PCI32 segment. The PCI32 segment supports the following embedded device:

2D Graphics Accelerator: ATI* ES1000 Video Controller

3.2.1.2 PXA: 64-bit, 133MHz PCI-X* Bus Segment

One 64-bit PCI-X* bus segment is directed through the ESB-2 ICH6. PCI-X segment PXA is not used in the Intel® Compute Module MFS5000SI design.

3.2.1.3 PE1: One x4 PCI Express* Bus Segment

One x4 PCI Express* bus segment is directed through the ESB-2. PCI Express segment PE1 is not used in the Intel® Compute Module MFS5000SI design.

3.2.1.4 PE2: One x4 PCI Express* Bus Segment

One x4 PCI Express* bus segment is directed through the ESB-2. PCI Express segment PE2 supports the LSI* 1064e SAS controller.

3.2.1.5 PE4, PE5: Two x4 PCI Express* Bus Segments

Two x4 PCI Express* bus segments are directed through the MCH. PCI Express segments PE4 and PE5 support the optional I/O mezzanine card.

3.2.1.6 PE6, PE7: Two x4 PCI Express* Bus Segments

Two x4 PCI Express* bus segments are directed through the MCH. PCI Express segments PE6 and PE7 are not used in the Intel® Compute Module MFS5000SI design.

3.2.2 Serial ATA Support

The ESB-2 has an integrated Serial ATA (SATA) controller that supports independent DMA operation on six ports and supports data transfer rates of up to 3.0 Gb/s. These ports are not used in the Intel® Compute Module MFS5000SI design.

3.2.3 Parallel ATA (PATA) Support

The integrated IDE controller of the ESB-2 ICH6 provides one IDE channel. The PATA interface is not used in the Intel® Compute Module MFS5000SI design.

3.2.4 USB 2.0 Support

The USB controller functionality integrated into the ESB-2 provides the server board with the interface for up to eight USB 2.0 ports. Two external connectors are located on the front edge of the server board. These two ports are the only ports of the ESB-2 that are used in the compute module design.

3.3 Video Support

The server board provides an ATI* ES1000 PCI graphics accelerator, along with 16MB of video DDR SDRAM and support circuitry for an embedded SVGA video sub-system. The ATI* ES1000 chip contains

an SVGA video controller, clock generator, 2D engine, and RAMDAC in a 359-pin BGA. One 4Mx16x4 bank DDR SDRAM chip provides 16MB of video memory.

The SVGA sub-system supports a variety of modes, up to 1024 x 768 resolution in 8 / 16 / 32bpp modes under 2D. It also supports both CRT and LCD monitors up to a 100-Hz vertical refresh rate.

Video is accessed using a standard 15-pin VGA connector found on the front edge of the server board. Hot plugging the video while the system is still running is supported.

On-board video can be disabled using the BIOS Setup Utility.

3.3.1.1 Video Modes

The ATI* ES1000 chip supports all standard IBM* VGA modes. The following table shows the 2D modes supported for both CRT and LCD.

2D Mode	Refresh Rate (Hz)	2D Video Mode Support		
		8 bpp	16 bpp	32 bpp
640x480	60, 72, 75, 85, 90, 100	Supported	Supported	Supported
800x600	60, 70, 72, 75, 85,	Supported	Supported	Supported
1024x768	60, 70, 72, 75,85	Supported	Supported	Supported
1152x864	60,70,75,80,85	Supported	Supported	Supported
1280x1024	60	Supported	Supported	Supported

Table 6. Video Modes

3.3.1.2 Video Memory Interface

The memory controller sub-system of the ATI* ES1000 arbitrates requests from the direct memory interface, the VGA graphics controller, the drawing co-processor, the display controller, the video scalar, and the hardware cursor. Requests are serviced in a manner that ensures display integrity and maximum CPU/co-processor drawing performance.

The server board supports a 16MB (4Meg x 16-bit x 4 banks) DDR SDRAM device for video memory.

3.4 Network Interface Controller (NIC)

Network interface support is provided from the built-in Dual GbE MAC features of the ESB-2. These interfaces are routed over the midplane board to the Ethernet switch module in the rear of the system. These interfaces are used in SERDES mode and do not require a Physical Layer Transceiver (PHY). These ports provide the server board with support for dual LAN ports designed for 10/100/1000 Mbps operation.

Each Network Interface Controller (NIC) drives a single LED located on the front edge of the board. The link/activity LED indicates network connection when on, and Transmit/Receive activity when blinking.

3.4.1 Intel[®] I/O Acceleration Technology

Intel[®] I/O Acceleration Technology (I/OAT) moves network data more efficiently through Dual-Core and Quad-Core Intel[®] Xeon[®] processors 5000 sequence-based servers for improved application

responsiveness across diverse operating systems and virtualized environments. Intel® I/OAT improves network application responsiveness by unleashing the power of Dual-Core and Quad-Core Intel® Xeon® processors 5000 sequence through more efficient network data movement and reduced system overhead. Intel multi-port network adapters with Intel® I/OAT provide high-performance I/O for server consolidation and virtualization via stateless network acceleration that seamlessly scales across multiple ports and virtual machines. Intel® I/OAT provides safe and flexible network acceleration through tight integration into popular operating systems and virtual machine monitors, avoiding the support risks of 3rd-party network stacks and preserving existing network requirements, such as teaming and failover.

3.4.2 MAC Address Definition

Each Intel[®] Compute Module MFS5000SI has four MAC addresses assigned to it at the Intel factory. During the manufacturing process, each server board will have a white MAC address sticker placed on the board. The sticker will display the MAC address in both barcode and alpha numeric formats. The printed MAC address is assigned to NIC 1 on the server board. NIC 2 is assigned the NIC 1 MAC address + 1.

Two additional MAC addresses are assigned to the Baseboard Management Controller (BMC) embedded in the ESB-2. These MAC addresses are used by the BMC's embedded network stack to enable IPMI remote management over LAN. BMC LAN Channel 1 is assigned the NIC1 MAC address + 2, and BMC LAN Channel 2 is assigned the NIC1 MAC address + 3.

3.5 Super I/O

Legacy I/O support is provided by using a National Semiconductor* PC87427 Super I/O device. This chip contains all of the necessary circuitry to support the following functions:

- GPIOs
- One serial port (internal and used for debug only)
- Wake-up control

3.5.1.1 Serial Ports

The server board provides one serial port via an internal DH10 serial header (J1B1) to be used for debug purposes only. The serial interface follows the standard RS232 pin-out as defined in the following table.

Pin Signal Name **Serial Port Header Pin-out** DCD 1 2 DSR 2 3 RX 3 4 4 **RTS** 5 TX 6 5 CTS 6 7 8 7 **DTR** 8 RI 9 GND

Table 7. Serial Header Pin-out

3.5.1.2 Floppy Disk Controller

The server board does not support a floppy disk controller (FDC) interface. However, the system BIOS does recognize USB floppy devices.

3.5.1.3 Keyboard and Mouse Support

Keyboard and mouse support is provided locally by the two USB ports located on the front panel of the board. The compute module also provides remote keyboard and mouse support.

3.5.1.4 Wake-up Control

The super I/O contains functionality that allows various events to power-on and power-off the system.

Intel order number: E15154-003

4. Platform Management

The platform management sub-system on the server board is based on the integrated Baseboard Management Controller (BMC) features of the ESB-2. The on-board platform management subsystem consists of communication buses, sensors, system BIOS, and server management firmware.

See Appendix B for on-board sensor data.

For more detailed platform management information, see the *Intel*[®] 5000 Series Chipsets Server Board Family Datasheet.

This Table outlines all I²C buses present on each compute module. Note that the primary slave address for the compute module on the primary IPMB is chosen by the ID bits on the midplane. All primary IPMB addresses start at 0x30 and go up in increments of 2.

Table 8. Compute Module I²C Bus Segments and Addresses

I2C Bus Segment	Device
Primary IPMB (BMC - SMBD0/SMBCLK0)	0x30 – Compute module in slot 1
	0x32 – Compute module in slot 2
	0x34 – Compute module in slot 3
	0x36 – Compute module in slot 4
	0x38 – Compute module in slot 5
	0x3a – Compute module in slot 6
Secondary IPMB (BMC - SMBD1/SMBCLK1)	Connected but unused
OEM I2C (BMC - SMBD2/SMBCLK2)	0x00 – SAS controller
Sensor Bus (BMC - SMBD3/SMBCLK3)	0xac – AT24C02 (IDROM)
	0xa8 – AT24C64 (IPMI SEL)
	0x5c – LM94
	0xd8 – SIO3
	0x88 – ICH6 SMLINK
Mezz card connector (BMC - SMBD4/SMBCLK4)	Not defined on compute module
ICH6 (SMLINK-SL)	0x88 – ICH6 SMLINK
ICH6 (SMB_ICH-MS)	0x44 – ICH6 SMB_ICH-MS
	0xd2 – CK410B
	0xde – DB1200G
Host SMBUS (PEXH – SDTA/SCLK)	0x52 – PECI Controller
	0xc0 – MCH
SPD Bus 0 (SPD0)	0xa0 - Channel A DIMM 1A SEEPROM
	0xa2 - Channel A DIMM 2A SEEPROM
	0xb0 - Channel A DIMM 1A AMB
	0xb2 - Channel A DIMM 2A AMB
SPD Bus 1 (SPD1)	0xa0 - Channel B DIMM 1B SEEPROM
	0xa2 - Channel B DIMM 2B SEEPROM
	0xb0 - Channel B DIMM 1B AMB
	0xb2 - Channel B DIMM 2B AMB
SPD Bus 2 (SPD2)	0xa0 - Channel C DIMM 1C SEEPROM
	0xa2 - Channel C DIMM 2C SEEPROM
	0xb0 - Channel C DIMM 1C AMB
	0xb2 - Channel C DIMM 2C AMB
SPD Bus 3 (SPD3)	0xa0 - Channel D DIMM 1D SEEPROM

20 Revision 1.0

0xa2 - Channel D DIMM 2D SEEPROM
0xb0 - Channel D DIMM 1D AMB
0xb2 - Channel D DIMM 2D AMB

5. Connector / Header Locations and Pin-outs

5.1 Board Connector Information

The following section provides detailed information regarding all connectors, headers and jumpers on the server board. Table 9 lists all connector types available on the board and the corresponding reference designators printed on the silkscreen.

Table 9. Board Connector Matrix

Connector	Quantity	Reference Designators
Power Connector	1	J1A1
Midplane Signal Connector	1	J3A1
CPU	2	J7G1, J5G1
Main Memory	8	J7B1,J7B2,J7B3,J8B2,J8B3,J8B4,J9B2,
		J9B3
I/O Mezzanine	1	J2B1
Battery	1	XBT1F1
USB	2	J4K1,J4K2
Serial Port A	1	J1B1
Video connector	1	J6K1
System Recovery Setting Jumpers	1	J4A1, J7A1, J1F2

5.2 Power Connectors

The power connection is obtained using a 2x2 FCI Airmax* Power connector. The following table defines the power connector pin-out.

Table 10. Power Connector Pin-out (J1A1)

Position	Signal
1	+12Vdc
2	GND
3	GND
4	+12Vdc

5.3 I/O Connector Pin-out Definition

5.3.1 VGA Connector

The following table details the pin-out definition of the VGA connector (J6K1).

Table 11. VGA Connector Pin-out (J6A1)

Pin	Signal Name	Description
1	V_IO_R_CONN	Red (analog color signal R)
2	V_IO_G_CONN	Green (analog color signal G)
3	V_IO_B_CONN	Blue (analog color signal B)
4	TP_VID_CONN_B4	No connection
5	GND	Ground
6	GND	Ground
7	GND	Ground
8	GND	Ground
9	TP_VID_CONN_B9	No connection
10	GND	Ground
11	TP_VID_CONN_B11	No connection
12	V_IO_DDCDAT	DDCDAT
13	V_IO_HSYNC_CONN	HSYNC (horizontal sync)
14	V_IO_VSYNC_CONN	VSYNC (vertical sync)
15	V_IO_DDCCLK	DDCCLK

5.3.2 I/O Mezzanine Card Connector

The server board provides an internal 120-pin Airmax* connector (J2B1) to accommodate high-speed I/O expansion modules, which expands the IO capabilities of the server board. The currently available I/O mezzanine card for this server is the Intel® Modular Server Accessory AXXGBIOMEZ, a dual gigabit Ethernet card based on the Intel® 82571EB. The following table details the pin-out of the Intel® I/O expansion module connector.

Revision 1.0 23

Table 12. 120-pin I/O Mezzanine Card Connector Pin-out

PIN	SIGNAL NAME	PIN	SIGNAL NAME	PIN	SIGNAL NAME
A1	PE4 MCH RXP C0	E1	PE5 MCH RXN C0	l1	GND
A2	GND	E2	PE5 MCH TXP C0	12	Reset N
A3	PE4 MCH RXP C1	E3	PE5 MCH RXN C1	13	GND
A4	GND	E4	PE5 MCH TXP C1	14	P1 ACT LED N
A5	PE4 MCH RXP C2	E5	PE5 MCH RXN C2	15	GND
A6	GND	E6	PE5 MCH TXP C2	16	P3V3
A7	PE4 MCH RXP C3	E7	PE5 MCH RXN C3	17	GND
A8	GND	E8	PE5 MCH TXP C3	18	P3V3
A9	CLK_100M_PCIE_P	E9	spare	19	GND
A10	GND	E10	SMB SCL	I10	P12V
B1	PE4 MCH RXN C0	F1	GND	J1	XE P2 D RXN
B2	PE4 MCH TXP C0	F2	PE5 MCH TXN C0	J2	GND
B3	PE4_MCH_RXN_C1	F3	GND	J3	XE_P2_C_RXN
B4	PE4 MCH TXP C1	F4	PE5 MCH TXN C1	J4	GND
B5	PE4 MCH RXN C2	F5	GND	J5	XE P2 B RXN
B6	PE4 MCH TXP C2	F6	PE5 MCH TXN C2	J6	GND
B7	PE4 MCH RXN C3	F7	GND	J7	XE P2 A RXN
B8	PE4 MCH TXP C3	F8	PE5 MCH TXN C3	J8	GND
B9	CLK 100M PCIE N	F9	GND	J9	P12V
B10	WAKE N	F10	SMB SDA	J10	GND
C1	GND	G1	Card ID 0	K1	XE P2 D RXP
C2	PE4 MCH TXN C0	G2	GND	K2	XE P2 D TXN
C3	GND	G3	P5V	K3	XE P2 C RXP
C4	PE4 MCH TXN C1	G4	GND	K4	XE P2 C TXN
C5	GND	G5	P2 LINK LED N	K5	XE P2 B RXP
C6	PE4 MCH TXN C2	G6	GND	K6	XE P2 B TXN
C7	GND	G7	P3V3	K7	XE P2 A RXP
C8	PE4_MCH_TXN_C3	G8	GND	K8	XE_P2_A_TXN
C9	GND	G9	P3VAUX	K9	P12V
C10	spare	G10	GND	K10	P12V
D1	PE5_MCH_RXP_C0	H1	Card_ID_1	L1	GND
D2	GND	H2	Card_ID_2	L2	XE_P2_D_TXP
D3	PE5_MCH_RXP_C1	Н3	P5V	L3	GND
D4	GND	H4	P1_LINK_LED_N	L4	XE_P2_C_TXP
D5	PE5_MCH_RXP_C2	H5	P2_ACT_LED_N	L5	GND
D6	GND	H6	P3V3	L6	XE_P2_B_TXP
D7	PE5_MCH_RXP_C3	H7	P3V3	L7	GND
D8	GND	Н8	P3V3	L8	XE_P2_A_TXP
D9	spare	Н9	P3VAUX	L9	GND
D10	GND	H10	P12V	L10	P12V

Revision 1.0

5.3.3 Midplane Signal Connector

The server board connects to the midplane through a 96-pin Airmax* connector (J3A1) (power is J1A1) to connect the various I/O, management, and control signals of the system.

Table 13. 96-pin Midplane Signal Connector Pin-out

PIN	SIGNAL NAME	PIN	SIGNAL NAME	PIN	SIGNAL NAME
A1	XE_P1_A_RXP	E1	XE_P2_D_RXN	11	GND
A2	GND	E2	XE_P2_D_TXP	12	SAS_P1_TXN
A3	XE_P1_B_RXP	E3	SMB_SDA_B	13	GND
A4	GND	E4	FM_BL_X_SP	14	XE_P2_C_TXN
A5	XE_P1_C_RXP	E5	XE_P2_B_RXN	15	GND
A6	GND	E6	XE_P2_B_TXP	16	SAS_P2_TXN
A7	XE_P1_D_RXP	E7	XE_P2_A_RXN	17	GND
A8	GND	E8	XE_P2_A_TXP	18	Fm_bl_slot_id5
B1	XE_P1_A_RXN	F1	GND	J1	SMB_SCL_A
B2	XE_P1_A_TXP	F2	XE_P2_D_TXN	J2	GND
В3	XE_P1_B_RXN	F3	GND	J3	FM_BL_SLOT_ID2
B4	XE_P1_B_TXP	F4	12V (BL_PWR_ON)	J4	GND
B5	XE_P1_C_RXN	F5	GND	J5	reserved
B6	XE_P1_C_TXP	F6	XE_P2_B_TXN	J6	GND
B7	XE_P1_D_RXN	F7	GND	J7	reserved
B8	XE_P1_D_TXP	F8	XE_P2_A_TXN	J8	GND
C1	GND	G1	SAS_P1_RXP	K1	SMB_SDA_A
C2	XE_P1_A_TXN	G2	GND	K2	FM_BL_SLOT_ID0
C3	GND	G3	XE_P2_C_RXP	K3	FM_BL_SLOT_ID3
C4	XE_P1_B_TXN	G4	GND	K4	FM_BL_SLOT_ID4
C5	GND	G5	SAS_P2_RXP	K5	reserved
C6	XE_P1_C_TXN	G6	GND	K6	reserved
C7	GND	G7	spare	K7	reserved
C8	XE_P1_D_TXN	G8	GND	K8	reserved
D1	XE_P2_D_RXP	H1	SAS_P1_RXN	L1	GND
D2	GND	H2	SAS_P1_TXP	L2	FM_BL_SLOT_ID1
D3	SMB_SCL_B	Н3	XE_P2_C_RXN	L3	GND
D4	GND	H4	XE_P2_C_TXP	L4	FM_BL_PRES_N
D5	XE_P2_B_RXP	H5	SAS_P2_RXN	L5	GND
D6	GND	H6	SAS_P2_TXP	L6	reserved
D7	XE_P2_A_RXP	H7	spare	L7	GND
D8	GND	H8	spare	L8	reserved

5.3.4 Serial Port Connector

The server board provides one internal 9-pin Serial 'A' port header (J1B1). The following table defines the pin-out.

See Table 7 for the pin-out of the serial header.

Revision 1.0 25

Table 14. Internal 9-pin Serial 'A' Header Pin-out (J1B1)

Pin	Signal Name	Description
1	SPA_DCD	DCD (carrier detect)
2	SPA_DSR	DSR (data set ready)
3	SPA_SIN_L	RXD (receive data)
4	SPA_RTS	RTS (request to send)
5	SPA_SOUT_N	TXD (transmit data)
6	SPA_CTS	CTS (clear to send)
7	SPA_DTR	DTR (data terminal ready)
8	SPA_RI	RI (ring Indicate)
9	GND	Ground

5.3.5 USB 2.0 Connectors

The following table details the pin-out of the external USB connectors (J4K1, J4K2) found on the front edge of the server board.

Table 15. External USB Connector Pin-out

Pin	Signal Name	Description
1	USB_OC#_FB_1	USB_PWR
2	USB_P#N_FB_2	DATAL0 (Differential data line paired with DATAH0)
3	USB_P#P_FB_2	DATAH0 (Differential data line paired with DATAL0)
4	GND	Ground

6. Jumper Block Settings

The server board has several 3-pin jumper blocks that can be used to configure, protect, or recover specific features of the server board. Pin 1 on each jumper block is denoted by an "*" or "▼".

6.1 Recovery Jumper Blocks

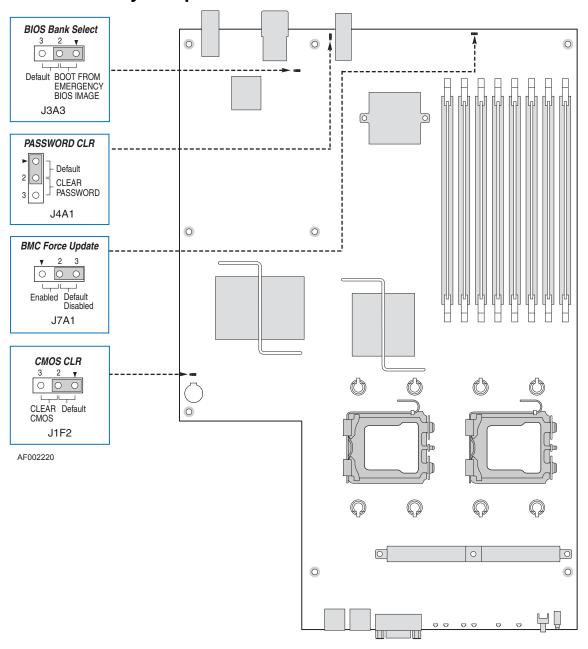


Figure 10. Recovery Jumper Blocks

Table 16. Recovery Jumpers

Jumper Name	Pins	What happens at system reset			
J7A1: BMC Force	1-2	BMC Firmware Force Update Mode – Enabled			
Update	2-3	BMC Firmware Force Update Mode – Disabled (Default)			
J4A1: Password	1-2	hese pins should have a jumper in place for normal system operation. (Default)			
Clear	2-3	If these pins are jumpered, administrator and user passwords will be cleared immediately. These pins should not be jumpered for normal operation.			
J1F2: CMOS Clear 1-2 These pins should have a jumper in place for normal		These pins should have a jumper in place for normal system operation. (Default)			
	2-3	If these pins are jumpered, the CMOS settings will be cleared immediately. These pins should not be jumpered for normal operation			
J3A3: BIOS Bank Select	1-2	If these pins are jumpered, the BIOS will be forced to boot from the lower bank. These pins should not be jumpered for normal operation.			
	2-3	These pins should have a jumper in place for normal system operation. (Default)			

6.1.1 CMOS Clear and Password Reset Usage Procedure

The CMOS Clear (J1F2) and Password Reset (J4A1) recovery features are designed such that the desired operation can be achieved with minimal system down time. The usage procedure for these two features has changed from previous generation Intel[®] server boards. The following procedure outlines the new usage model.

- Power down compute module (do not remove AC power)
- Remove compute module from modular server chassis
- Open compute module
- Move jumper from Default operating position (pins 1-2) to Reset/Clear position (pins 2-3)
- Wait 5 seconds
- Move jumper back to default position (pins 1-2)
- Close the compute module
- Reinstall compute module in modular server chassis
- Power up the compute module
- Password and/or CMOS is now cleared and can be reset by going into BIOS setup

Note: Removing AC power before performing the CMOS Clear operation will cause the system to automatically power up and immediately power down after the reset procedure has been completed and AC power is re-applied. Should this occur, remove the AC power cord again, wait 30 seconds, and reinstall the AC power cord. Power up the system and proceed to the <F2> BIOS Setup Utility to reset desired settings.

6.1.2 BMC Force Update Procedure

When performing a standard BMC firmware update procedure, the update utility places the BMC into an update mode, allowing the firmware to load safely onto the flash device. In the unlikely event that the BMC firmware update process fails due to the BMC not being in the proper update state, the server board provides a BMC Force Update jumper (J7A1) which will force the BMC into the proper update state. The following procedure should be followed in the event the standard BMC firmware update process fails.

- Power down and remove AC power
- Remove compute module from modular server chassis

Revision 1.0

- Open compute module
- Move jumper from Default operating position (pins 2-3) to "Enabled" position (pins 1-2)
- Close the compute module
- Reconnect AC power and power up the compute module
- Perform standard BMC firmware update procedure via the Intel® Modular Server Control software
- Power down and remove AC power
- Remove compute module from the server system
- Move jumper from "Enabled" position (pins 1-2) to "Disabled" position (pins 2-3)
- Close the server system
- Reinstall the compute module into the modular server chassis
- Reconnect AC power and power up the compute module

Note: Normal BMC functionality (e.g., KVM, monitoring, remote media) is disabled with the force BMC update jumper set to the "Enabled" position. The server should never be run with the BMC force update jumper set in this position and should only be used when the standard firmware update process fails. This jumper should remain in the default – disabled position when the server is running normally.

6.1.3 System Status LED – BMC Initialization

When the AC power is first applied to the system and 5V-STBY is present, the BMC controller on the server board requires 15-20 seconds to initialize. During this time, the system status LED will blink, alternating between amber and green, and the power button functionality of the control panel is disabled, preventing the server from powering up. Once BMC initialization has completed, the status LED will stop blinking and power button functionality is restored. The power button can then be used to turn on the server.

Revision 1.0 29

7. Product Regulatory Requirements

7.1 Intended Application

This product is to be evaluated and certified as Information Technology Equipment (ITE), which may be installed in offices, schools, computer rooms, and similar commercial type locations. The suitability of this product for other product certification categories and/or environments (such as: medical, industrial, telecommunications, NEBS, residential, alarm systems, test equipment, etc.), other than an ITE application, will require further evaluation and may require additional regulatory approvals.

<u>Note</u>: The use and/or integration of telecommunication devices such as modems and/or wireless devices have not been planned for with respect to these systems. If there is any change of plan to use such devices, then telecommunication type certifications will require additional planning. If NEBS compliance is required for system-level products, additional certification planning and design will be required.

7.2 Product Safety Requirements

Item	Requirement	Description	Р	R	YN D	Src
	Product Safety	Board to be evaluated as part of system and requires meeting with any applicable system component safety requirements.	1	1	Y	

7.3 Electro Magnetic Compatibility (EMC) / Harmonic Requirements

Item	Requirement	Description	Р	R	Y/N/ D	Src
	Product EMC	Board to be evaluated as part of system and requires meeting with any applicable system component EMC requirements.	1	1	Υ	

7.4 Product Ecology Requirements

Intel has a system in place to restrict the use of banned substances in accordance with worldwide product ecology regulatory requirements. Suppliers Declarations of Conformity to the banned substances must be obtained from all supplier, and a Material Declaration Data Sheet (MDDS) must be produced to illustrate compliance. Due verification of random materials is required as a screening / audit to verify suppliers declarations.

Item	Requirement	Description	Р	R	Y/N/ D	Src
	Product Ecology	All materials, parts and subassemblies must not contain restricted materials as defined in Intel's Environmental Product Content Specification of Suppliers and Outsourced Manufacturers – http://supplier.intel.com/ehs/environmental.htm	1	1	Y	

30 Revision 1.0

Product Ecology	Europe - European Directive 2002/95/EC - Restriction of Hazardous Substances (RoHS) Threshold limits and banned substances are noted below: Quantity limit of 0.1% by mass (1000 PPM) for: Lead, Mercury, Hexavalent Chromium, Polybrominated Biphenyls Diphenyl Ethers (PBB/PBDE) Quantity limit of 0.01% by mass (100 PPM) for:	1	1	Y	
Product Ecology	Cadmium China RoHS	1	1	Υ	
Product Ecology	All plastic parts that weigh >25gm shall be marked with the ISO11469 requirements for recycling. Example >PC/ABS<	1	1	Υ	
Product Ecology	EU Packaging Directive	1	1	Υ	
Product Ecology (Boxed Boards Only)	German Green Dot	1	1	Υ	
Product Ecology (Boxed Boards Only)	Japan Recycling	1	1	Υ	

7.5 Component Regulatory Requirements Needed to Support System Level Certifications

Various components and materials require component-level certifications to support system-level certifications. Not having component-level certifications will impact the system-level certification cost wise and may prevent shipment of the component as a spare or accessory into a certain country. Certification of components shall be at the most current certifications standard.

Item	Requirement	Description	Р	R	Y/N/ D	Src
	Component Certifications	Fans – Minimum Certifications: UL and TUV or VDE Certification marks to be visible on fan	1	1	Y	
	Component Certifications	Current Limiting Devices Used for Safety (e.g., fuse, PTC, etc.) Minimum Certifications: UL and TUV or VDE	1	1	Υ	
	Component Certifications	DC to DC converters UL recognized required	1	1	Υ	
	Component Certifications	Lithium Batteries UL recognized; and battery circuits are to have suitable reverse bias current protection for the application it is used in. Certification marks to be visible on battery.	1	1	Y	

Revision 1.0 31

Component Certifications	Printed Wiring Boards Require to be UL Recognized board from a UL approved bare board fabricator / manufacturer. Rated minimum V-0 and 130C. Fabricators name and/or trademark; UL symbol and flame rating shall all be marked on board.	1	1	Y	
Component Certifications	Connectors Require being UL Recognized. Rated minimum V-0 and temperature wise suitably rated for its application.	1	1	Y	
Component Certifications	Cables / Wiring Harnesses (e.g., ribbon cables) Require being UL Recognized and temperature wise suitably rated for its application. Certification marks to be visible on harness.	1	1	Y	
Component Certifications	Plastics Require being UL Recognized and suitable flammability requirement for its application. For example: Fire Enclosure >18Kg requires min 5V Fire Enclosure <18Kg requires min V-1 All plastic parts require to be marked with Plastic Fabricators name and/or UL Fabricator ID Material Name (e.g., GE, C2800) Date Code	1	1	Y	
Component Certifications	Labels Use for Product Safety Require being purchased from UL approved label vendor; and suitable for the surface it is being applied to. Alternatively, labels may be printed from a UL approved label printing system and suitable for the surface it is being applied to.	1	1	Υ	

7.6 Product Regulatory Compliance and Safety Markings

No markings required on the board itself as it is evaluated as part of the end system.

Appendix A: Integration and Usage Tips

- When two processors are installed, both must be of identical revision, core voltage, and bus/core speed. Mixed processor steppings is supported. However, the stepping of one processor cannot be greater then one stepping back of the other.
- Processors must be installed in order. CPU 1 is located near the edge of the server board and must be populated to operate the board.
- Only Fully Buffered DIMMs (FBD) are supported on this server board. For a list of supported memory for this server board, see the Intel® Compute Module MFS5000SI Tested Memory List.
- For a list of Intel supported operating systems, add-in cards, and peripherals for this server board, see the Intel® Compute Module MFS5000SI Tested Hardware and Operating System List.
- Only Dual-Core or Quad-Core Intel[®] Xeon[®] processors 5000 sequence, with system bus speeds of 667/1066/1333 MHz are supported on this server board. Previous generation Intel[®] Xeon[®] processors are not supported.
- For best performance, the number of DIMMs installed should be balanced across both memory branches. For example: a four-DIMM configuration will perform better than a two-DIMM configuration and should be installed in DIMM Slots A1, B1, C1, and D1. An eight-DIMM configuration will perform better then a six-DIMM configuration.
- Normal BMC functionality (e.g., KVM, monitoring, remote media) is disabled with the force BMC update jumper set to the "enabled" position (pins 1-2). The server should never be run with the BMC force update jumper set in this position and should only be used when the standard firmware update process fails. This jumper should remain in the default (disabled) position (pins 2-3) when the compute module is running normally.
- When performing a BIOS update procedure, the BIOS select jumper must be set to its default position (pins 2-3).

Revision 1.0 33

Appendix B: BMC Sensor Tables

Table 17 lists the sensor identification numbers and information regarding the sensor type, name, what thresholds are supported, and a brief description of what the sensor is used for. See the Intelligent Platform Management Interface Specification, Version 2.0, for sensor and event / reading-type table information.

Sensor Type

The Sensor Type references the values enumerated in the Sensor Type Codes table in the IPMI specification. It provides the context in which to interpret the sensor, e.g., the physical entity or characteristic that is represented by this sensor.

Event / Reading Type

The Event / Reading Type references values from the Event / Reading Type Code Ranges and Generic Event / Reading Type Codes tables in the IPMI specification. Note that digital sensors are a specific type of discrete sensor, which has only two states.

Event Offset Triggers

This column defines what event offsets the sensor generates.

For Threshold (analog reading) type sensors, the BMC can generate events for the following thresholds:

- **Upper Critical**
- Upper Non-critical
- Lower Non-critical
- Lower Critical

The abbreviation [U,L] is used to indicate that both Upper and Lower thresholds are supported. A few sensors support only a subset of the standard four threshold triggers. Note that even if a sensor does support all thresholds, the SDRs may not contain values for some thresholds. Consult Table 18 for information on what thresholds are defined in the SDRs.

For Digital and Discrete type sensor event triggers, the supported event generating offsets are listed. The offsets can be found in the Generic Event / Reading Type Codes or Sensor Type Codes tables in the IPMI specification, depending on whether the sensor event / reading type is a generic or sensor specific response.

All sensors generate both assertions and de-assertions of the defined event triggers. Whether the assertions and d-assertions generate events into the System Event Log (SEL) depends on the sensor SDR settings.

Fault LED

This column indicates whether an assertion of an event lights the front panel fault LED. The BMC aggregates all fault sources (including outside sources such as the BIOS) such that the LED will be lit as long as any source indicates that a fault state exists. The BMC extinguishes the fault LED when all sources indicate no faults are present.

Sensor Rearm

The rearm is a request for the event status for a sensor to be rechecked and updated upon a transition between good and bad states. Rearming the sensors can be done manually or automatically; the abbreviations 'A' and 'M' are used.

Readable

Some sensors are used simply to generate events into the System Event Log. The Watchdog timer sensor is one example. These sensors operate by asserting and then immediately de-asserting an event. Typically the SDRs for such sensors are defined such that only the assertion causes an event message to be deposited in the SEL. Reading such a sensor produces no useful information and is marked as 'No' in this column. Note that some sensors <u>may</u> actually be unreadable in that they return an error code in response to the IPMI *Get Sensor Reading* command. These sensors are represented by type 3 SDR records.

Standby

Some sensors operate on standby power. These sensors may be accessed and / or generate events when the compute module payload power is off, but standby power is present.

Table 17. BMC Sensors

Name	#	Sensor Type	Event / Reading Type	Event Offset Triggers	Status LED	Read?	R e a r m	Stand-by
Power Unit Status	01h	Power Unit 09h	Sensor Specific 6Fh	0: Power down	None	Yes	Α	Yes
				1: Power cycle	None			
				4: A/C lost (DC input lost)	None			

Name	#	Sensor Type	Sensor Type Event / Reading Event Offset Trigge Type		Status LED	Read?	R e a r m	Stand-by
				5: Soft power control failure (did not turn on or off)	Fault			
				6: Power unit failure (power good dropout)	Fault			
				0: Timer expired	None			
			Sensor Specific 6Fh	1: Hard reset	None			
Watchdog 03h	03h	Watchdog2 23h		2: Power down	None	No	Α	Yes
				3: Power cycle	None			
				8: Timer interrupt	None			
System Event	0Bh	System Event 12h	Sensor Specific 6Fh	04 – PEF action	None	No	Α	Yes
				0: S0 / G0	None			
				1: S1	None			
				3: S3	None			
System ACPI Power	0Ch	System ACPI Power State	Sensor Specific	4: S4	None	Yes	Α	Yes
State		22h	6Fh	5: S5 / G2	None			165
				7: G3 mechanical off	None			
				B: Legacy ON state	None			
				C: Legacy OFF state	None			
BB +1.2V Vtt	10h	Voltage	Thresh.	[U,L] Non-critical	Fault	Yes	Α	No

Name	#	Sensor Type	Event / Reading Type	Event Offset Triggers	Status LED	Read?	R e a r m	Stand-by
			01h	[U,L] Critical	Fault			
BB +1.5V AUX	11h	Voltage	Thresh.	[U,L] Non-critical	Fault	Yes	А	No
			0111	[U,L] Critical	Fault			
BB +1.5V	12h	Voltage	Thresh.	[U,L] Non-critical	Fault	Yes	A	No
			OIII	[U,L] Critical	Fault			
BB +1.8V 13h	13h	Voltage	Thresh.	[U,L] Non-critical	Fault	Yes	А	No
		0111	[U,L] Critical	Fault				
BB +3.3V	14h	Voltage	Thresh.	[U,L] Non-critical	Fault	Yes	А	No
				[U,L] Critical	Fault			
BB +3.3V STB	15h	Voltage	Thresh.	[U,L] Non-critical	Fault	Yes	А	Yes
			0111	[U,L] Critical	Fault			
BB +1.5V ESB	16h	Voltage	Thresh.	[U,L] Non-critical	Fault	Yes	Α	Yes
			OIII	[U,L] Critical	Fault			
BB +5V	17h	Voltage	Thresh.	[U,L] Non-critical	Fault	Yes	Α	No
			3111	[U,L] Critical	Fault			
BB +12V AUX	18h	Voltage	Thresh.	[U,L] Non-critical	Fault	Yes	Α	No
			J	[U,L] Critical	Fault			
BB 0.9V	19h	Voltage	Thresh.	[U,L] Non-critical	Fault	Yes	Α	No

Name	#	Sensor Type	Event / Reading Type	Reading Event Offset Triggers Type		Read?	R e a r m	Stand-by
			01h	[U,L] Critical	Fault			
BB Vbat (SIO)	1Ah	Voltage	Digital Discrete 05h	1: Limit exceeded	Fault	Yes	Α	Yes
BB Temp 1 (LM94)	30h	Temp. 01h	Thresh.	[U,L] Non-critical	Fault	Yes	А	Yes
(LIVI94)		OTH	OTH	[U,L] Critical	Fault			
BB Temp 2 (SIO)	31h	Temp.	Thresh.	[U,L] Non-critical	Fault	Yes	Α	Yes
(310)		OIII	OIII	[U,L] Critical	Fault			
SMI Timeout	40h	SMI Timeout F3h	Digital Discrete 03h	1: State asserted	Fault	No	Α	No
Memory Error	41h	Memory 0Ch	Sensor Specific 6Fh	1: Uncorrectable ECC	Fault	No	А	No
Critical Int.	42h	Critical Interrupt 13h	Sensor Specific 6Fh	8: Bus uncorrectable Error	Fault	No	Α	No
				0: IERR	Fault			
Processor 1,2 Status	90h, 91h	Processor 07h	Sensor Specific 6Fh	1: Thermal trip	Fault	Yes	М	Yes
				7: Presence	None			
Processor 1 Core 1,2,3,4 Thermal	92h – 95h	Temp. 01h	Thresh.	Upper Non-critical	Fault	Yes	А	No
Margin (PECI)				Upper Critical	Fault			
Processor 2 Core 1,2,3,4 Thermal	96h –99h	Temp.	Thresh.	Upper Non-critical	Fault	Yes	A	No
Margin (PECI)		uin	0111	Upper Critical	Fault			
Processor 1,2 Thermal Ctrl %	9Ah, 9Bh	Temp. 01h	Thresh. 01h	Upper Critical	Fault	Yes	А	No

Name	#	Sensor Type	Event / Reading Type	Event Offset Triggers	Status LED	Read?	R e a r m	Stand-by
Processor 1,2 VRD Hot	9Ch, 9Dh	Temp. 01h	Digital Discrete 05h	1: Limit exceeded	Fault	Yes	М	No
Processor 1,2 Vcc Out-of-Range	A0h, A1h	Voltage	Digital Discrete 05h	1: Limit exceeded	Fault	Yes	Α	No
				1: Inactive	None			
				2: Activation Req.	None			
Hot Swap Sensor	B0h	Hot Swap	Sensor Specific	3: Act. In Progress	None	Vaa	_	Yes
not swap sensor Buil	2Ch	6Fh	4: Active	None	Yes	A	res	
				5: Deactivation Req.	None]		
				6: Deact. In Progress	None			
Mezzanine Card Present	C0h	Slot/Connector 21h	Sensor Specific 6Fh	2: Device installed	None	Yes	Α	No
Attention State	C1h	OEM D0h	OEM D0h	0: ID LED Lit	None	Yes	Α	Yes
		DON	Don	1: Fault State Active	None			
Drive Backplane Present	C2h	Drive Slot 0Dh	Digital Discrete 08h	0: Device Absent	None	Yes	Α	No
		ODII	0011	1: Device Present	None			
Drive 1,2 ¹	C3h, C4h	Drive Slot 0Dh	Sensor Specific 6Fh	0: Present	None	Yes	А	No
Slot ID	C5h	OEM D1h	Thresh. 01h	None	None	Yes	Α	Yes
Process Progress	FEh			7: Process Started	None			
		OEM D2h	OEM D2h	8: Process Finished OK	None	Yes	А	Yes
				9: Process Finished Fail	None			
							4	

Note 1: SDRs for these sensors are loaded only into the compute module SKU that supports these drives. Reading these sensors in a SKU that does not support drives will return unknown data.

Sensor SDR Information

This section describes the information that is entered into the SDRs.

The SDRs for all sensors will be set to generate events for both assertions and de-assertions of all supported sensor offsets as listed in Table 17.

Analog Sensor Thresholds

Table 18 shows the thresholds set into the SDR records for the BMC's analog sensors.

These values are preliminary at the time of this writing.

Table 18. Analog Sensor Thresholds

Name	#	Sensor Type	Lower Critical	Lower Non-Critical	Upper Non- Critical	Upper Critical
BB +1.2V Vtt	10h	Voltage	1.11V	N/A	N/A	1.29V
BB +1.5V AUX	11h	Voltage	1.39V	N/A	N/A	1.61V
BB +1.5V	12h	Voltage	1.39V	N/A	N/A	1.61V
BB +1.8V	13h	Voltage	1.67V	N/A	N/A	1.94V
BB +3.3V	14h	Voltage	3.06V	N/A	N/A	3.55V
BB +3.3V STB	15h	Voltage	3.06V	N/A	N/A	3.55V
BB +1.5V ESB	16h	Voltage	1.39V	N/A	N/A	1.61V
BB +5V	17h	Voltage	4.63V	N/A	N/A	5.38V
BB +12V AUX	18h	Voltage	11.12V	N/A	N/A	12.92V
BB 0.9V	19h	Voltage	0.83V	N/A	N/A	0.97V
BB Temp 1 (LM94)	30h	Temperature	0°C	5°C	40°C	45°C
BB Temp 2 (SIO)	31h	Temperature	0°C	5°C	40°C	45°C

Name	#	Sensor Type	Lower Critical	Lower Non-Critical	Upper Non- Critical	Upper Critical
Processor 1 Core 1,2,3,4 Thermal Margin (PECI)	92h – 95h	Temperature	N/A	N/A	-10°C	-5°C
Processor 2 Core 1,2,3,4 Thermal Margin (PECI)	96h –99h	Temperature	N/A	N/A	-10°C	-5°C
Processor 1,2 Thermal Ctrl %	9Ah, 9Bh	Temperature	N/A	N/A	N/A	1%

Appendix C: POST Error Messages and Handling

Whenever possible, the BIOS will output the current boot progress codes on the video screen. Progress codes are 32-bit quantities plus optional data. The 32-bit numbers include class, subclass, and operation information. The class and subclass fields point to the type of hardware that is being initialized. The operation field represents the specific initialization activity. Based on the data bit availability to display progress codes, a progress code can be customized to fit the data width. The higher the data bit, the higher the granularity of information that can be sent on the progress port. The progress codes may be reported by the system BIOS or option ROMs.

The Response section in the following table is divided into two types:

Minor: The message is displayed on the screen or in the Error Manager screen. The system will continue booting with a degraded state. The user may want to replace the erroneous unit. The setup POST error Pause setting does not have any effect with this error.

Major: The message is displayed in the Error Manager screen, and an error is logged to the SEL. The setup POST error Pause setting determines whether the system pauses to the Error Manager for this type of error, where the user can take immediate corrective action or choose to continue booting.

Fatal: The message is displayed in the Error Manager screen, an error is logged to the SEL, and the system cannot boot unless the error is resolved. The user needs to replace the faulty part and restart the system. The setup POST error Pause setting does not have any effect with this error.

Error Code Error Message Response 004C Keyboard / interface error Major 0012 CMOS date / time not set Major 0048 Password check failed Fatal 0141 PCI resource conflict Major 0146 Insufficient memory to shadow PCI ROM Maior 0192 L3 cache size mismatch Fatal 0194 CPUID, processor family are different Fatal 0195 Front side bus mismatch Major 0197 Processor speeds mismatched Major 5220 Configuration cleared by jumper Minor 5221 Passwords cleared by jumper Major 8110 Processor 01 internal error (IERR) on last boot Major 8111 Processor 02 internal error (IERR) on last boot Major Processor 01 thermal trip error on last boot 8120 Major 8121 Processor 02 thermal trip error on last boot Maior 8130 Processor 01 disabled Major 8131 Processor 02 disabled Major 8160 Processor 01 unable to apply BIOS update Major 8161 Processor 02 unable to apply BIOS update Major 8190 Watchdog timer failed on last boot Major 8198 Operating system boot watchdog timer expired on last boot Major 8300 Baseboard management controller failed self-test Major

Table 19. POST Error Messages and Handling

42 Revision 1.0

Error Code	Error Message	Response
8306	Front panel controller locked	Major
8305	Hot swap controller failed	Major
84F2	Baseboard management controller failed to respond	Major
84F3	Baseboard management controller in update mode	Major
84F4	Sensor data record empty	Major
84FF	System event log full	Minor
8500	Memory Component could not be configured in the selected RAS mode.	Major
8520	DIMM_A1 failed Self Test (BIST).	Major
8521	DIMM_A2 failed Self Test (BIST).	Major
8522	DIMM_A3 failed Self Test (BIST).	Major
8523	DIMM_A4 failed Self Test (BIST).	Major
8524	DIMM_B1 failed Self Test (BIST).	Major
8525	DIMM_B2 failed Self Test (BIST).	Major
8526	DIMM_B3 failed Self Test (BIST).	Major
8527	DIMM_B4 failed Self Test (BIST).	Major
8528	DIMM_C1 failed Self Test (BIST).	Major
8529	DIMM_C2 failed Self Test (BIST).	Major
852A	DIMM C3 failed Self Test (BIST).	Major
852B	DIMM_C4 failed Self Test (BIST).	Major
852C	DIMM_D1 failed Self Test (BIST).	Major
852D	DIMM D2 failed Self Test (BIST).	Major
852E	DIMM_D3 failed Self Test (BIST).	Major
852F	DIMM D4 failed Self Test (BIST).	Major
8540	Memory Component lost redundancy during the last boot.	Major
8580	DIMM_A1 Correctable ECC error encountered.	Minor/Major after 10 events
8581	DIMM_A2 Correctable ECC error encountered.	Minor/Major after 10 events
8582	DIMM_A3 Correctable ECC error encountered.	Minor/Major after 10 events
8583	DIMM_A4 Correctable ECC error encountered.	Minor/Major after 10 events
8584	DIMM_B1 Correctable ECC error encountered.	Minor/Major after 10 events
8585	DIMM_B2 Correctable ECC error encountered.	Minor/Major after 10 events
8586	DIMM_B3 Correctable ECC error encountered.	Minor/Major after 10 events
8587	DIMM_B4 Correctable ECC error encountered.	Minor/Major after 10 events
8588	DIMM_C1 Correctable ECC error encountered.	Minor/Major after 10 events
8589	DIMM_C2 Correctable ECC error encountered.	Minor/Major after 10 events
858A	DIMM_C3 Correctable ECC error encountered.	Minor/Major after 10 events
858B	DIMM_C4 Correctable ECC error encountered.	Minor/Major after 10 events
858C	DIMM_D1 Correctable ECC error encountered.	Minor/Major after 10 events
858D	DIMM_D2 Correctable ECC error encountered.	Minor/Major after 10 events
858E	DIMM_D3 Correctable ECC error encountered.	Minor/Major after 10 events
858F	DIMM_D4 Correctable ECC error encountered.	Minor/Major after 10 events
8601	Override jumper is set to force boot from lower alternate BIOS bank of flash ROM.	Minor
8602	WatchDog timer expired (secondary BIOS may be bad!).	Minor
8603	Secondary BIOS checksum fail.	Minor

Error Code	Error Message	Response
92A3	Serial port component was not detected.	Major
92A9	Serial port component encountered a resource conflict error.	Major
0xA000	TPM device not detected.	Minor
0xA001	TPM device missing or not responding.	Minor
0xA002	TPM device failure	Minor
0xA003	TPM device failed self test.	Minor

POST Error Pause Option

In case of POST error(s) that are listed as "Major", the BIOS will enter the Error Manager and wait for the user to press an appropriate key before booting the operating system or entering BIOS Setup.

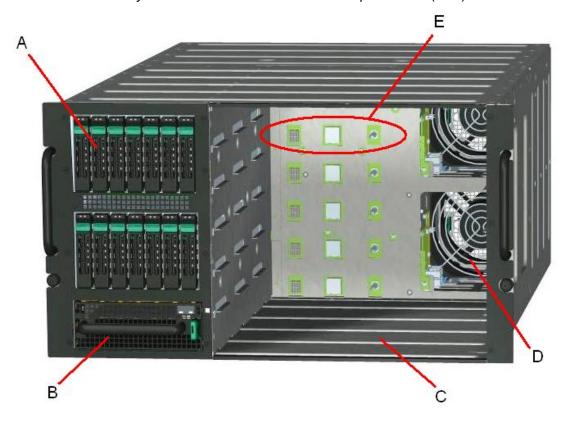
The user can override this option by setting "POST Error Pause" to "disabled" in the BIOS Setup Main menu page. If the "POST Error Pause" option is set to "disabled", the system will boot the operating system without user-intervention. The default value is set to "disabled".

POST Error Beep Codes

The following table lists the POST error beep codes. Prior to system video initialization, the BIOS uses these beep codes to inform users of error conditions. The beep code is followed by a user visible code on POST Progress LEDs.

Table 20. POST Error Beep Codes

Beeps	Error Message	POST Progress Code	Description
3	Memory error		System halted because a fatal error related to the memory was detected.
6	BIOS recovery		The system has detected a corrupted BIOS in the flash part, and is recovering the last good BIOS.


44 Revision 1.0

Appendix D: Supported Intel® Modular Server System

The Intel® Compute Module MFS5000SI is supported in the following chassis:

■ Intel[®] Modular Server System MFSYS25

This section provides a high-level descriptive overview of each chassis. For more details, refer to the *Intel® Modular Server System MFSYS25 Technical Product Specification* (TPS).

Α	Shared hard drive storage bay
В	I/O cooling fans
С	Empty compute module bay
D	Compute module cooling fans
Е	Compute module midplane connectors

Figure 11. Intel® Modular Server System MFSYS25

Intel order number: E15154-003

Glossary

This appendix contains important terms used in the preceding chapters. For ease of use, numeric entries are listed first (e.g., "82460GX") with alpha entries following (e.g., "AGP 4x"). Acronyms are then entered in their respective place, with non-acronyms following.

Term	Definition		
ACPI	Advanced Configuration and Power Interface		
AP	Application Processor		
APIC	Advanced Programmable Interrupt Control		
ASIC	Application Specific Integrated Circuit		
ASMI	Advanced Server Management Interface		
BIOS	Basic Input/Output System		
BIST	Built-In Self Test		
BMC	Baseboard Management Controller		
Bridge	Circuitry connecting one computer bus to another, allowing an agent on one to access the other		
BSP	Bootstrap Processor		
byte	8-bit quantity.		
CBC	Chassis Bridge Controller (A microcontroller connected to one or more other CBCs, together they bridge the IPMB buses of multiple chassis.		
CEK	Common Enabling Kit		
CHAP	Challenge Handshake Authentication Protocol		
CMOS	In terms of this specification, this describes the PC-AT compatible region of battery-backed 128 bytes of memory, which normally resides on the server board.		
DPC	Direct Platform Control		
EEPROM	Electrically Erasable Programmable Read-Only Memory		
EHCI	Enhanced Host Controller Interface		
EMP	Emergency Management Port		
EPS	External Product Specification		
ESB-2	Enterprise South Bridge 2		
FBD	Fully Buffered DIMM		
FMB	Flexible Mother Board		
FRB	Fault Resilient Booting		
FRU	Field Replaceable Unit		
FSB	Front Side Bus		
GB	1024MB		
GPIO	General Purpose I/O		
GTL	Gunning Transceiver Logic		
HSC	Hot-Swap Controller		
Hz	Hertz (1 cycle/second)		
I2C	Inter-Integrated Circuit Bus		
IA	Intel [®] Architecture		
IBF	Input Buffer		
ICH	I/O Controller Hub		
ICMB	Intelligent Chassis Management Bus		
IERR	Internal Error		

Term	Definition
IFB	I/O and Firmware Bridge
INTR	Interrupt
IP	Internet Protocol
IPMB	Intelligent Platform Management Bus
IPMI	Intelligent Platform Management Interface
IR	Infrared
ITP	In-Target Probe
KB	1024 bytes
KCS	Keyboard Controller Style
LAN	Local Area Network
LCD	Liquid Crystal Display
LED	Light Emitting Diode
LPC	Low Pin Count
LUN	Logical Unit Number
MAC	Media Access Control
MB	1024KB
MCH	Memory Controller Hub
MD2	Message Digest 2 – Hashing Algorithm
MD5	Message Digest 5 – Hashing Algorithm – Higher Security
ms	milliseconds
MTTR	Memory Type Range Register
Mux	Multiplexor
NIC	Network Interface Controller
NMI	Nonmaskable Interrupt
OBF	Output Buffer
OEM	Original Equipment Manufacturer
Ohm	Unit of electrical resistance
PEF	Platform Event Filtering
PEP	Platform Event Paging
PIA	Platform Information Area (This feature configures the firmware for the platform hardware)
PLD	Programmable Logic Device
PMI	Platform Management Interrupt
POST	Power-On Self Test
PSMI	Power Supply Management Interface
PWM	Pulse-Width Modulation
RAM	Random Access Memory
RASUM	Reliability, Availability, Serviceability, Usability, and Manageability
RISC	Reduced Instruction Set Computing
ROM	Read Only Memory
RTC	Real-Time Clock (Component of ICH peripheral chip on the server board)
SDR	Sensor Data Record
SECC	Single Edge Connector Cartridge
SEEPROM	Serial Electrically Erasable Programmable Read-Only Memory
SEL	System Event Log

Glossary

Term	Definition	
SIO	Server Input/Output	
SMI	Server Management Interrupt (SMI is the highest priority nonmaskable interrupt)	
SMM	Server Management Mode	
SMS	Server Management Software	
SNMP	Simple Network Management Protocol	
TBD	To Be Determined	
TIM	Thermal Interface Material	
UART	Universal Asynchronous Receiver/Transmitter	
UDP	User Datagram Protocol	
UHCI	Universal Host Controller Interface	
UTC	Universal time coordinate	
VID	Voltage Identification	
VRD	Voltage Regulator Down	
Word	16-bit quantity	
ZIF	Zero Insertion Force	

48 Revision 1.0

Reference Documents

See the following documents for additional information:

- Intel[®] 5000 Series Chipsets Server Board Family Datasheet
- Intel[®] Bensley BIOS Core External Product Specification
- Intel[®] Bensley BMC Core External Product Specification
- Intel[®] 5000P Memory Controller Hub External Design Specification
- Intel[®] Enterprise South Bridge-2 (ESB-2) External Design Specification
- Intel[®] Modular Server System MFSYS25 Technical Product Specification

Revision 1.0 49